3.6.16 \(\int \frac {1}{x^3 (1+x)^{3/2} (1-x+x^2)^{3/2}} \, dx\) [516]

Optimal. Leaf size=170 \[ \frac {2}{3 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {7 \left (1+x^3\right )}{6 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {7 \sqrt {2+\sqrt {3}} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}} \]

[Out]

2/3/x^2/(1+x)^(1/2)/(x^2-x+1)^(1/2)-7/6*(x^3+1)/x^2/(1+x)^(1/2)/(x^2-x+1)^(1/2)-7/18*EllipticF((1+x-3^(1/2))/(
1+x+3^(1/2)),I*3^(1/2)+2*I)*(1+x)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x
^2-x+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {929, 296, 331, 224} \begin {gather*} -\frac {7 \sqrt {2+\sqrt {3}} \sqrt {x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^2-x+1}}+\frac {2}{3 x^2 \sqrt {x+1} \sqrt {x^2-x+1}}-\frac {7 \left (x^3+1\right )}{6 x^2 \sqrt {x+1} \sqrt {x^2-x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

2/(3*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (7*(1 + x^3))/(6*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (7*Sqrt[2 + Sq
rt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x
)], -7 - 4*Sqrt[3]])/(6*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 929

Int[((g_.)*(x_))^(n_)*((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d
+ e*x)^FracPart[p]*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]), Int[(g*x)^n*(a*d + c*e*x^3)^p,
 x], x] /; FreeQ[{a, b, c, d, e, g, m, n, p}, x] && EqQ[m - p, 0] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^3 (1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx &=\frac {\sqrt {1+x^3} \int \frac {1}{x^3 \left (1+x^3\right )^{3/2}} \, dx}{\sqrt {1+x} \sqrt {1-x+x^2}}\\ &=\frac {2}{3 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}+\frac {\left (7 \sqrt {1+x^3}\right ) \int \frac {1}{x^3 \sqrt {1+x^3}} \, dx}{3 \sqrt {1+x} \sqrt {1-x+x^2}}\\ &=\frac {2}{3 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {7 \left (1+x^3\right )}{6 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {\left (7 \sqrt {1+x^3}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{12 \sqrt {1+x} \sqrt {1-x+x^2}}\\ &=\frac {2}{3 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {7 \left (1+x^3\right )}{6 x^2 \sqrt {1+x} \sqrt {1-x+x^2}}-\frac {7 \sqrt {2+\sqrt {3}} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.25, size = 170, normalized size = 1.00 \begin {gather*} \frac {-\frac {6 \left (3+7 x^3\right )}{x^2 \sqrt {1+x}}-\frac {7 i (1+x) \sqrt {1+\frac {6 i}{\left (-3 i+\sqrt {3}\right ) (1+x)}} \sqrt {6-\frac {36 i}{\left (3 i+\sqrt {3}\right ) (1+x)}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {1+x}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {-\frac {i}{3 i+\sqrt {3}}}}}{36 \sqrt {1-x+x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

((-6*(3 + 7*x^3))/(x^2*Sqrt[1 + x]) - ((7*I)*(1 + x)*Sqrt[1 + (6*I)/((-3*I + Sqrt[3])*(1 + x))]*Sqrt[6 - (36*I
)/((3*I + Sqrt[3])*(1 + x))]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3
*I - Sqrt[3])])/Sqrt[(-I)/(3*I + Sqrt[3])])/(36*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 259, normalized size = 1.52

method result size
elliptic \(\frac {\sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}\, \left (-\frac {\sqrt {x^{3}+1}}{2 x^{2}}-\frac {2 x}{3 \sqrt {x^{3}+1}}-\frac {7 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{6 \sqrt {x^{3}+1}}\right )}{\sqrt {1+x}\, \sqrt {x^{2}-x +1}}\) \(169\)
risch \(-\frac {7 x^{3}+3}{6 x^{2} \sqrt {1+x}\, \sqrt {x^{2}-x +1}}-\frac {7 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right ) \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}}{6 \sqrt {x^{3}+1}\, \sqrt {1+x}\, \sqrt {x^{2}-x +1}}\) \(173\)
default \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \left (7 i \sqrt {3}\, \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x^{2}-21 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x^{2}-14 x^{3}-6\right )}{12 \left (x^{3}+1\right ) x^{2}}\) \(259\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(1+x)^(3/2)/(x^2-x+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/12*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(7*I*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3)
)^(1/2))*3^(1/2)*x^2*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+
1)/(I*3^(1/2)+3))^(1/2)-21*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)
+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))
*x^2-14*x^3-6)/(x^3+1)/x^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.22, size = 48, normalized size = 0.28 \begin {gather*} -\frac {{\left (7 \, x^{3} + 3\right )} \sqrt {x^{2} - x + 1} \sqrt {x + 1} + 7 \, {\left (x^{5} + x^{2}\right )} {\rm weierstrassPInverse}\left (0, -4, x\right )}{6 \, {\left (x^{5} + x^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

-1/6*((7*x^3 + 3)*sqrt(x^2 - x + 1)*sqrt(x + 1) + 7*(x^5 + x^2)*weierstrassPInverse(0, -4, x))/(x^5 + x^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \left (x + 1\right )^{\frac {3}{2}} \left (x^{2} - x + 1\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(1/(x**3*(x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x^3\,{\left (x+1\right )}^{3/2}\,{\left (x^2-x+1\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(x + 1)^(3/2)*(x^2 - x + 1)^(3/2)),x)

[Out]

int(1/(x^3*(x + 1)^(3/2)*(x^2 - x + 1)^(3/2)), x)

________________________________________________________________________________________